• K-nearest neighbour
  • Introduction
  • 1. [Articals]
    • 1.1. [Hubs in Space: Popular Nearest Neighbors in High-Dimensional Data]
      • 1.1.1. [Introduction]
        • 1.1.1.1. The curse of dimensionality
        • 1.1.1.2. Notation
        • 1.1.1.3. What caused the skewness
      • 1.1.2. The Hubness Phenomenon
        • 1.1.2.1. A Motivating Example
        • 1.1.2.2. Hubness in Real Data
      • 1.1.3. The Origins of Hubness
        • 1.1.3.1. The Position of Hubs
        • 1.1.3.2. Mechanisms Behind Hubness
          • 1.1.3.2.1. why points closer to the data mean become hubs in high dimensions
        • 1.1.3.3. Hubness in Real Data
      • 1.1.4. The Impact of Hubness on Machine Learning
        • 1.1.4.1. Supervised Learning
          • 1.1.4.1.1. "GOOD" AND "BAD" k-OCCURRENCES
          • 1.1.4.1.2. "Bad" hubs
          • 1.1.4.1.3. Origin of "Bad" Hub
          • 1.1.4.1.4. INFLUENCE ON CLASSIFICATION ALGORITHMS
    • 1.2. 自然最近邻居在高维数据结构学习中的应用
      • 1.2.1. 摘要
      • 1.2.2. 绪论
      • 1.2.3. 自然最近邻居(3N)
        • 1.2.3.1. 最近邻居技术
        • 1.2.3.2. 自然最近邻居(3N)
        • 1.2.3.3. 3N 邻居的特性
        • 1.2.3.4. 构造自适应最近邻域图
        • 1.2.3.5. 本章小结
      • 1.2.4. 3N 邻居在谱图聚类中的应用
        • 1.2.4.1. 聚类结构的子空间描述理论及方法
        • 1.2.4.2. 改进的 MNCut 算法
        • 1.2.4.3. 改进的 MNcut 算法:3N-MNcut 算法
    • 1.3. A Tutorial on Spectral Clustering
      • 1.3.1. Similarity graphs
      • 1.3.2. Graph Laplacians and their basic properties
      • 1.3.3. Spectral Clustering Algorithms
      • 1.3.4. Graph cut point of view
      • 1.3.5. Random walks point of view
      • 1.3.6. Practical details
      • 1.3.7. Outlook and further reading
    • 1.4. Nearest neighbor regression in the presence of bad hubs
    • 1.5. 基于自然最近邻的无参聚类算法研究
      • 1.5.1. 自然最近邻居的定义及改进
      • 1.5.2. 基于自然最近邻居的无参聚类算法
  • 2. Visual Data Mining
    • 2.1. POIViz: a fast interactive method for visualizing a large collection of Open datasets
      • 2.1.1. Related Work
      • 2.1.2. CONTRIBUTION
    • 2.2. The Comparative Analysis of Major Foreign Visual Data Mining Software
      • 2.2.1. RAPIDMINER
    • 2.3. Improving Big Data Visual Analytics with Interactive Virtual Reality
  • 3. Seminar Log
  • 4. SpotLight
Powered by GitBook

K-nearest neighbour

A Tutorial on Spectral Clustering